

Honeywell ProWatch Pre-Wired Product Companion

Wiring Convention and Supplemental Guide to Honeywell ProWatch ProWire™ Power Management Systems

Contents

Introduction3
Standard Conventions4
System Wiring Example
Typical Wiring - Honeywell ProWatch Boards14
Typical Wiring - LSP Boards

Introduction

Traditional wiring for access control systems is time consuming and labor intensive. ProWire™ systems take LifeSafety Power's award-winning Unified Power™ solutions to a new higher level of service by pre-wiring all lock and system power connections to Authentic Gallagher terminal strips for easy plug-and-play installation.

Prewired features of ProWire™ Systems include access control or system power, lock power, auxiliary power distribution, lock control, system communications loop, and optional remote management.

The access control modules are powered from a D8P, SD4P, or SD16 power distribution module providing a Class 2, Power Limited source with individual protection for each access control board and a dedicated power supply configured for 12VDC. Each D8P module provides eight protected outputs capable of 2.5A per output and a configuration jumper to select which power supply is applied to a specific output in dual voltage systems. SD4P modules provide four outputs capable of 2.5A each. SD16 modules provide 16 outputs electronically limited to 1A each.

The field connected locks are powered and controlled from either a C8 or M8 lock control module with a separate dedicated power supply typically configured for 24VDC. Each C8 or M8 module provides either jumpers or software programmability to configure each individual output for 12 or 24VDC, FAI operation, and failsafe or failsecure operation of the lock when triggered by the access control.

Optional remote management provides the system with the ability to generate email or SNMP alert messages on a scheduled or event driven basis, monitor and control power remotely, test standby batteries over the network, and maintain a historical record of system performance.

Units from four to twenty-four door capacity are available with wire tie or wire duct wire management. **ProWire systems for ProWatch accomodate Honeywell PW7K Series controllers.**

Standard Conventions

The following section presents the conventions used within this document for board labeling and placement, output usage, and wire coloring.

Honeywell Board Numbering

Honeywell board locations are numbered as H1, H2, etc. in sequence, from top to bottom, left to right or in a clockwise order, depending on enclosure and available open locations.

Configurations using a PW7K1IC intelligent controller will always have the controller located in the H1 location.

See Typical Enclosure Configurations starting on page 5 for examples.

LSP Board Numbering

LifeSafety Power board locations are numbered with the board type and a number to indicate individual boards. Locations with multiple designations may have either board or may have both boards stacked, depending on configuration.

FPO-1 Lock Power, or System Power in Single Voltage Systems

FPO-2 System Power in large Dual Voltage Systems

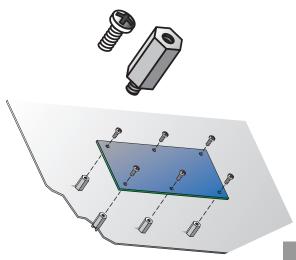
B100 or B150 System Power in small Dual Voltage Systems

D8P-1 to D8P-n Power Distribution, Class 2 Power Limited

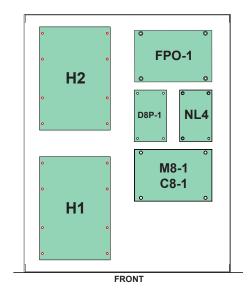
SD4P-1 to SD4P-n Network Managed Power Distribution, Class 2 Power Limited

SD16-1 to SD16-n Network Managed Power Distribution, Class 2 Power Limited

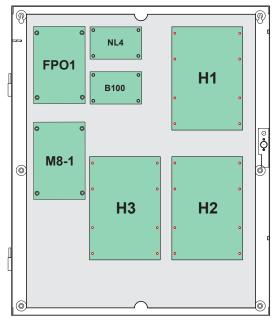
C8-1 / M8-1 Lock Control for locks 1 - 8

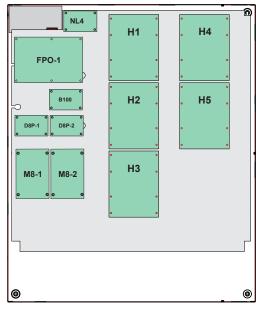

C8-2 / M8-2 Lock Control for locks 9 - 16

C8-3 / M8-3 Lock Control for locks 17 - 24

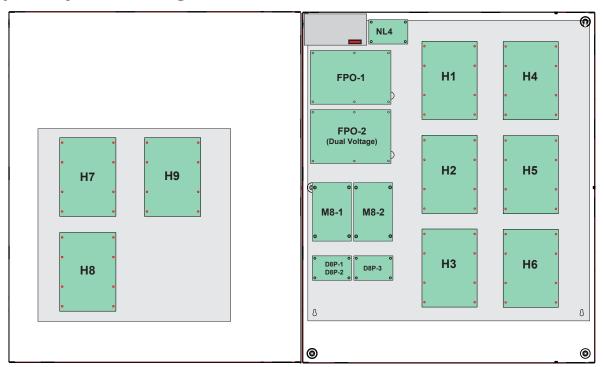

Honeywell Board Mounting

Mounting of the Honeywell subassemblies are by means of the supplied 6-32 SEMS screws using the preinstalled hex standoffs.

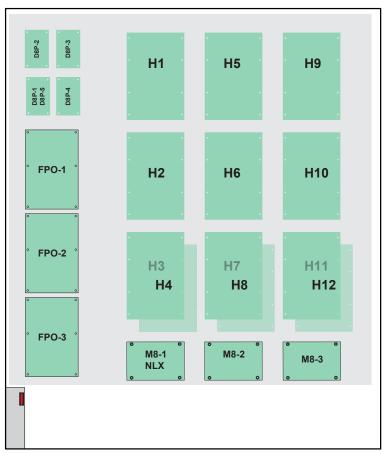

⚠ Do not overtighten the hardware during the install process.


Typical System Configurations

2-4 Door - RGH Rack Mount Drawer



4 Door - E4H


8 Door - E8H

Typical System Configurations

16 Door - E8H1

Typical System Configurations

24Door - E12H

Wiring Conventions

Wiring within the enclosure uses a consistent method and wire coloring as detailed below.

Honeywell Board Power Connections

Honeywell Board power originates from the 12V supply (FPO-2 or B100) in Dual Voltage systems, or from FPO-1 in Single Voltage systems. Power is supplied to the Honeywell boards from D8P-1, SD4P-1, or SD16-1, providing Class 2 Power Limited outputs. Honeywell Board H1 is powered from output 1, H2 from output 2, etc. Honeywell Power wiring uses twisted 18AWG wire.

Red: +12VDC Black: Ground (-)

Honeywell RS458 Communications

The Honeywell RS485 communications wiring is daisy chained from Honeywell Board H1, to H2, etc. Honeywell RS485 wiring uses jacketed, twisted 20AWG wire with shield.

White: RS485+ Black: RS485-

Shield: RS485 GND

Lock Control Input Color Code to C8/M8 from Honeywell Outputs

The wiring between the Honeywell board output and the C8 or M8 Lock Control board inputs uses twisted 18AWG wire with the following color convention:

Output 1: Brown / Black
Output 2: Red / Black
Output 3: Orange / Black
Output 4: Yellow / Black
Output 5: Green / Black
Output 6: Blue / Black
Output 7: Violet / Black
Output 8: Gray / Black

Wire coloring repeats for inputs 9-16 on C8-2/M8-2 and 17-24 on C8-3/M8-3

ProWire™ Standard Conventions Quick Reference

Honeywell Board Numbering

- H1 ... H5
- H2 ... H6
- H3 ... H7
- H4 ... H8
- Controller location H1

LSP Board Numbering

- FPO1 Lock power
- FPO2 System power
- D8P-1 to D8P-n Power distribution
- SD4P-1 to SD4P-n Power distribution
- SD16-1 to SD16-n Power distribution
- C8-1/M8-1 Lock control for locks 1 8
- C8-2/M8-2 Lock control for locks 9 16
- C8-3/M8-3 Lock control for locks 17 24

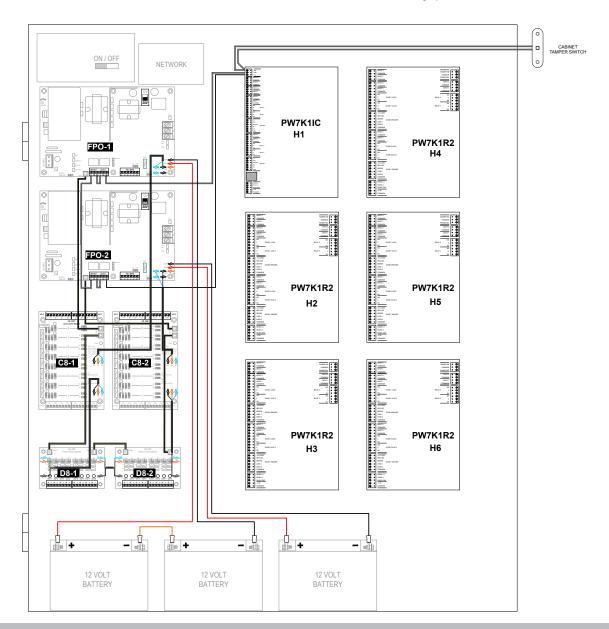
Honeywell Board Power

- 12VDC Class 2, Power Limited
- Red +12VDC
- Black GND
- Twisted 18 AWG
- From D8P-1, SD4P-1, or SD16-1 Class 2, PL source

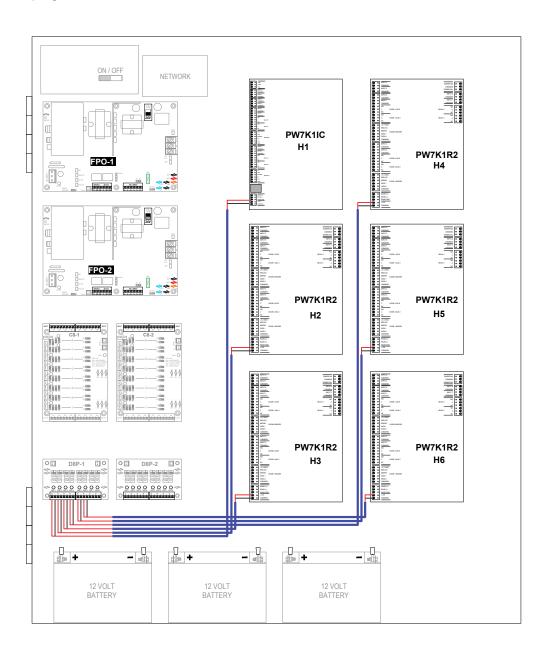
RS485 Communications

- Daisy chained from H1.....Hn
- Jacketed, twisted, with shield, 20 AWG
- White RS485+
- Black RS485-
- Shield RS485 GND

Lock Control Input Color Code to C8 /M8 from Access Control

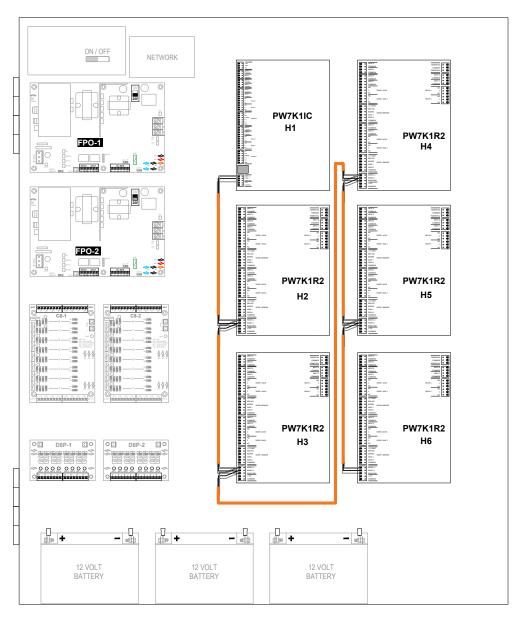

- 1 Brown / Black twisted 18 AWG
- 2 Red / Black twisted 18 AWG
- 3 Orange / Black twisted 18 AWG
- 4 Yellow / Black twisted 18 AWG
- 5 Green / Black twisted 18 AWG
- 6 Blue / Black twisted 18 AWG
- 7 Violet / Black twisted 18 AWG
- 8 Gray / Black twisted 18 AWG
- Repeat for inputs 9 24 on C8-2/M8-2 and C8-3/M8-3

The following pages show an overview of wiring for a typical prewired system. Details of the wiring for each board are in later sections. All drawings show a "C" configuration (using a PW7K1IC controller). Wiring for other configurations is similar - See pages 14-16 for terminal locations of the ProWatch Series controllers.

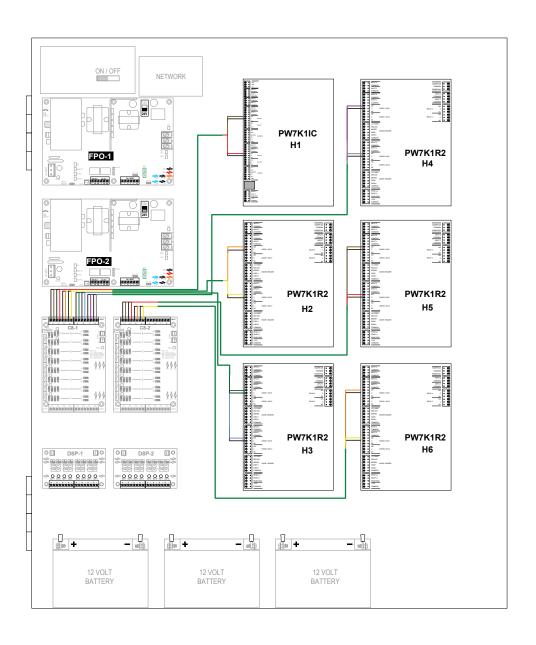

LifeSafety Power Board, Fault, and Tamper Switch Wiring

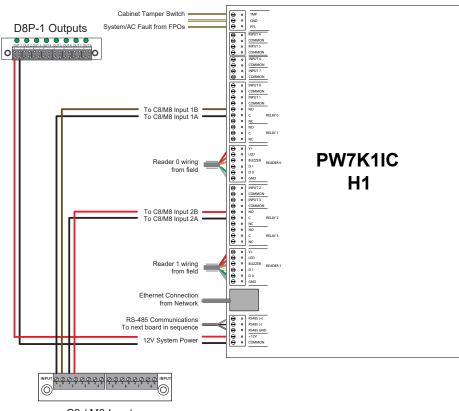
The LifeSafety Power boards are prewired for power, Fault, and FlexIO. FPO-1 is wired to the B1 buss, and FPO-2 is wired to the B2 buss. FlexIO daisychains between all of the LSP boards to provide fault and FAI throughout the system. Fault wiring uses the FPO's NO contacts for System and AC fault and connects to the H1 fault input. See AN-19 for more information on the Dual Buss architecture used for accessory power.

Honeywell Board Power Wiring


The Honeywell ProWatch controllers are prewired for power to D8P-1. Honeywell board H1 is wired to output 1, H2 to output 2, etc. Wiring is red/black twisted pair. All drawings show a "C" configuration (using the PW7K1IC controller). Wiring for other configurations is similar - See pages 14-16 for terminal locations of the ProWatch Series controllers.

Honeywell Board Communication Wiring


The Honeywell ProWatch controller RS-485 communication between boards is prewired from H1 in order to the last board in the chain. Wiring is jacketed and twisted with shield. Black and white wires are for Tx+ and Tx-, while the shield is used for GND. All drawings show a "C" configuration (using the PW7K1IC controller). Wiring for other configurations is similar - See pages 14-16 for terminal locations of the ProWatch Series controllers.



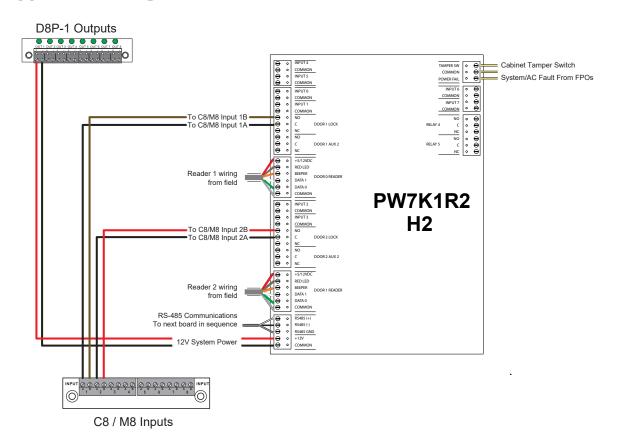
Honeywell Board Output Relay Wiring

The output lock relays of the Honeywell ProWatch controllers are prewired to the inputs of the C8 or M8 lock control boards. Wiring is twisted pair and is color coded. All drawings show a "C" configuration (using the PW7K1IC controller). Wiring for other configurations is similar - See pages 14-16 for terminal locations of the ProWatch Series controllers.

Typical Wiring - PW7K1IC

C8 / M8 Inputs

The PW7K1IC intelligent controllers provide decision making, event reporting, and database storage for the Honeywell ProWatch hardware platform. Two reader interfaces provide control for two doors.


Four form-C relay outputs may be used for door control or alarm signaling. Eight supervised inputs are provided for monitoring the door contact, exit push button and alarm contacts.

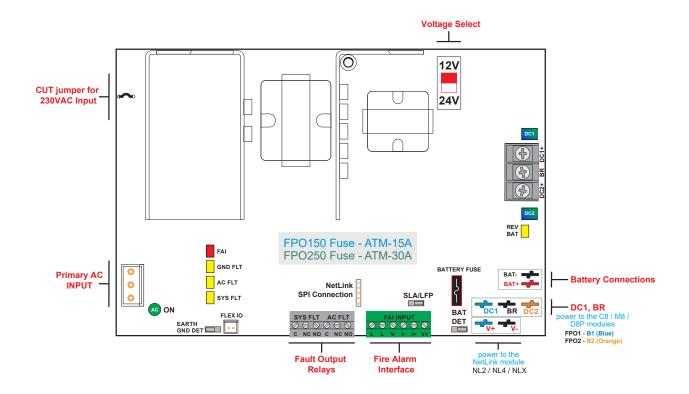
Communication to the PW7K1IC is accomplished via a 2-wire RS-485 interface.

The PW7K1IC requires 12VDC for power and is connected to 12VDC supplied from an LSP D8P, SD4P, or SD16 power distribution module which are Class 2 Power Limited sources.

The lock outputs of the PW7K1IC are connected to the C8/M8 inputs such that the PW7K1IC activates the C8/M8 lock control board and the C8/M8 activates the lock. This method adds another layer of control to the lock and protection for the Honeywell hardware.

Typical Wiring - PW7K1R2

The PW7K1R2 reader interface provides a solution for interfacing to readers and door hardware. The PW7K1R2 can accept data from readers with clock/data or Wiegand signaling, provide a tri-stated LED control and buzzer control.

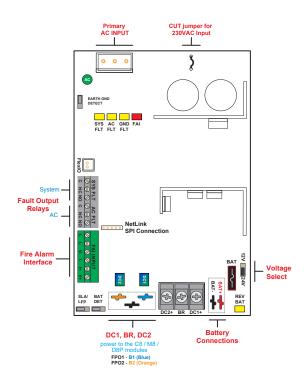

Six form-C relay outputs may be used for door control or alarm signaling. Eight supervised inputs are provided for monitoring the door contact, exit push button and alarm contacts.

Communication to the PW7K1R2 is accomplished via a 2-wire RS-485 interface.

The PW7K1R2 requires 12VDC for power and is connected to 12VDC supplied from an LSP D8P, SD4P, or SD16 power distribution module which are Class 2, Power Limited sources.

The lock outputs of the PW7K1R2 are connected to the C8/M8 inputs such that the relay activates the C8/M8 lock control board and the C8/M8 activates the lock. This method adds another layer of control to the lock and protection for the Honeywell hardware.

Typical Wiring - FPO150 / FPO250

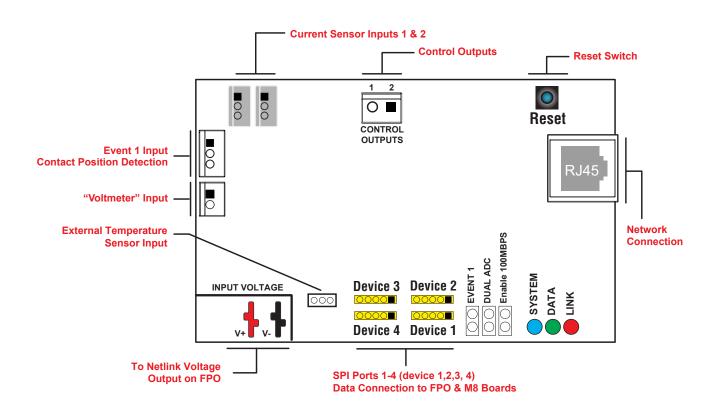

The FPO150 will provide 12V @ 12A or 24V @ 6A and the FPO250 will provide 12V @ 20A or 24V @ 10A. The output voltage is selectable by the slide switch in the upper right corner of the unit. Either unit will charge 4 to 80 Ah of battery capacity.

Voltage from this device is available throughout the system from the C8/M8 lock control boards and the D8P, SD4P, or SD16 power distribution boards.

AC and System Fault output relays of the FPO are wired to the Mercury hardware, and a fire alarm interface is available for lock over ride in the event of a fire condition. The fire over ride is applied to the C8/M8 lock control boards as needed and programmed.

See the supplied FPO manual for more information.

Typical Wiring - FPO75

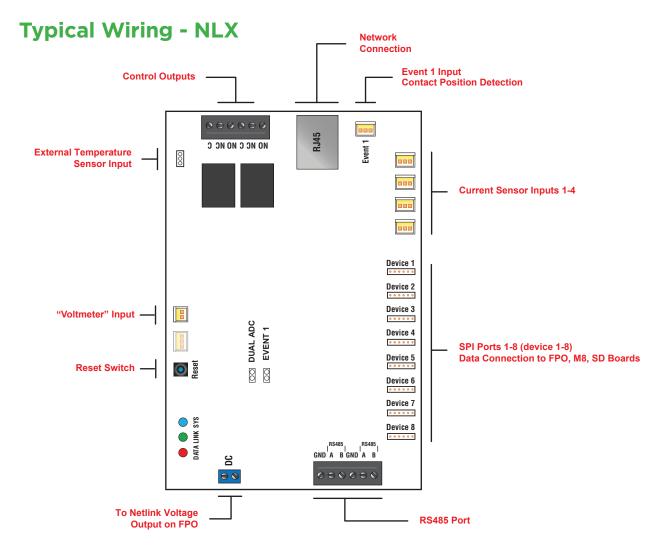

The FPO75 will provide 12V @ 6A or 24V @ 3A. The output voltage is selectable by the two position jumper in the center or corner of the unit (depending on revision). The FPO75 will charge 4 to 40 Ah of battery capacity.

Voltage from this device is available throughout the system from the C8/M8 lock control boards and the D8P, SD4P, or SD16 power distribution boards.

AC and System Fault output relays of the FPO are wired to the Mercury hardware, and a fire alarm interface is available for lock over ride in the event of a fire condition. The fire over ride is applied to the C8/M8 lock control boards as needed and programmed.

See the supplied FPO manual for more information.

Typical Wiring - NL4

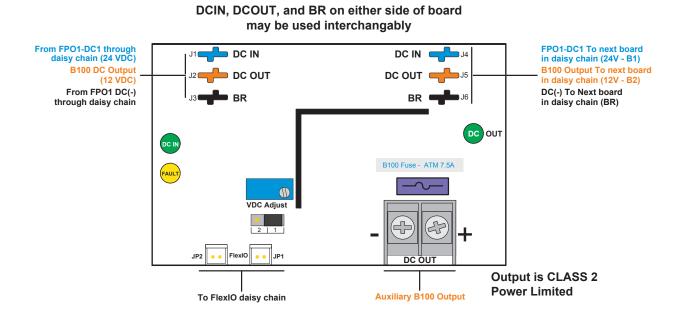


The NL4 is a network module that allows status communication and power control over a local or wide area network. The NL4 provides four device ports for connection to local FlexPower devices. Data monitored includes fault status, power supply output voltage, battery voltage and charging current, and FAI status. When used with an M8, SD4, or SD16 output board, the NL4 allows control, along with the ability to view voltage and current for each output.

In addition to the four device ports, the NL4 also includes two current sensors, a voltmeter input, an external temperature sensor, and a contact monitor input. Upper and lower limits can be set for these inputs to provide an alert if the value goes out of range.

A 1000 point history data log updates at the selected interval and is emailed on a status change. The data log can also be set to send on a selected schedule.

See the NL4 Installation manual and Application notes AN-20, AN-23, AN-24, and AN-25.

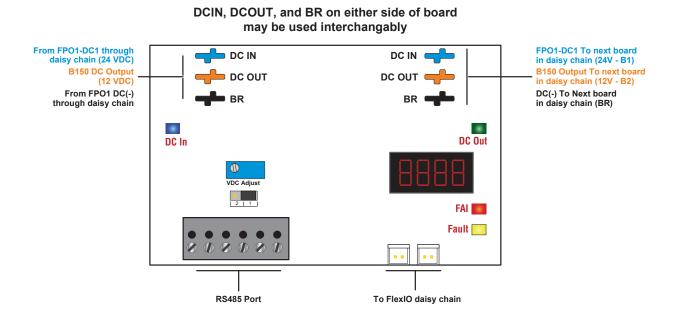

The NLX is a network module that allows status communication and power control over a local or wide area network. The NLX provides eight SPI device ports for connection to local FlexPower devices, and an RS485 port for connection to remote devices. Data monitored includes fault status, power supply output voltage, battery voltage and charging current, and FAI status. When used with an M8, SD4, SD16, or B150 board, the NLX allows control, along with the ability to view voltage and current for each output.

In addition to the SPI and RS485 ports, the NLX also includes four current sensors, a voltmeter input, an external temperature sensor, and a contact monitor input. Upper and lower limits can be set for these inputs to provide an alert if the value goes out of range.

A 1000 point history data log updates at the selected interval and is emailed on a status change. The data log can also be set to send on a selected schedule.

See the NLX Installation manual and Application notes AN-20, AN-23, AN-24, and AN-25.

Typical Wiring - B100

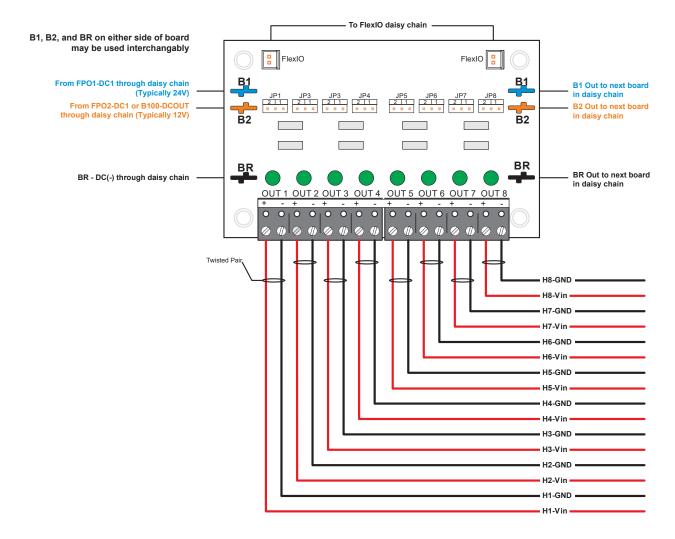

The B100 is used to provide 12V system power when the necessary current is less than 4A. The advantages of using the B100 over an FPO are that the B100 is physically smaller for more effective space utilization, more economical, and does not require a separate standby battery for 12V backup. Input power for the B100 is derived from FPO-1, which is set for 24V, rather than the AC line.

The B100 provides onboard visual indication of an operational or output fault and will transmit that fault condition to the host FPO in the system for activation of the FPO system fault relay.

The B100 is rated as a Low Voltage, Class 2, power Limited unit.

For more information see the B100 Installation manual and Application Note AN-07.

Typical Wiring - B150

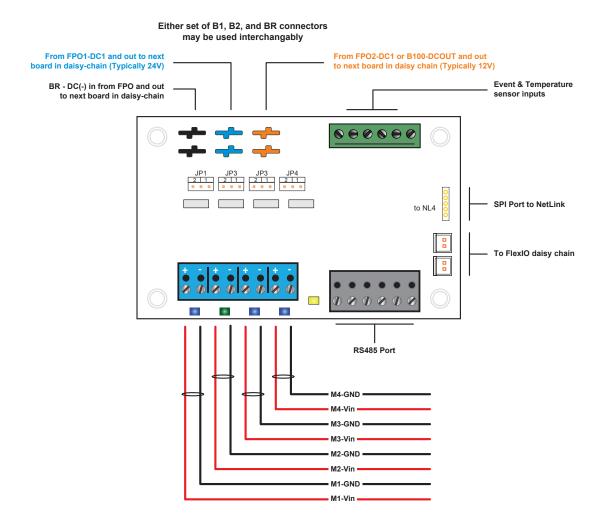


The B150 is used to provide 12V system power when the necessary current is less than 6A. The advantages of using the B150 over an FPO are that the B150 is physically smaller for more effective space utilization, more economical, and does not require a separate standby battery for 12V backup. Input power for the B100 is derived from FPO-1, which is set for 24V, rather than the AC line.

The B150 provides onboard visual indication of an operational or output fault and will transmit that fault condition to the host FPO in the system for activation of the FPO system fault relay. A four digit LED display shows total input power, output voltage, and output current.

An optional RS485 port allows connection of the B150 to the RS485 port of an NLX module to allow control and the ability to view the voltage and current of the output.

Typical Wiring - D8P

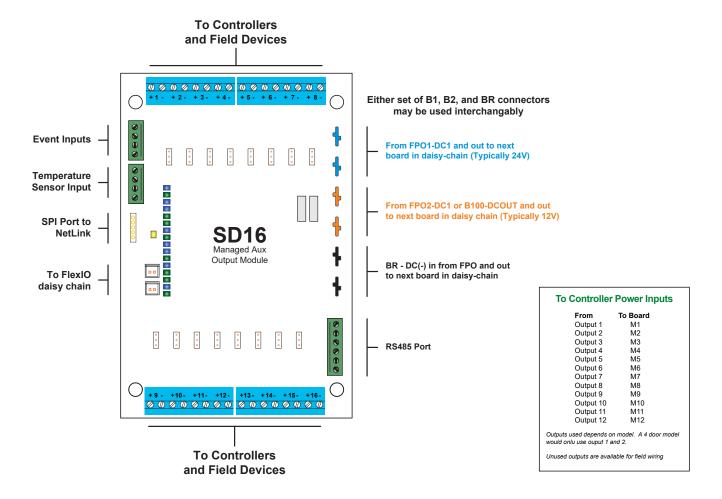


The D8P provides continuous auxiliary outputs. D8P-1 is prewired for power to the Mercury controllers. One or more additional D8P boards may be provided for external auxiliary power. The terminal strips on these additional D8P boards will be empty.

Jumpers JP1 through JP8 are used to select the output voltage for each output in dual voltage systems. Position 1 selects the voltage connected to the B1 buss, while position 2 selects the voltage on the B2 buss. Single voltage systems should leave these jumpers in position 1.

See the D8P Installation manual for more information.

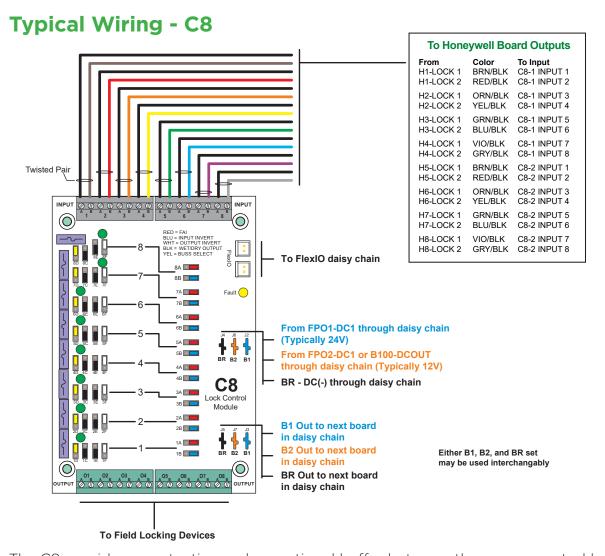
Typical Wiring - SD4P



The SD4P provides network managed continuous auxiliary outputs. SD4P-1 is prewired for power to the Mercury controllers. One or more additional SD4P boards may be provided for external auxiliary power. The terminal strips on these additional SD4P boards will be empty.

System configuration, FAI Operation, and fault setpoints are selectable through the embedded browser interface of the required NL4 or NLX. Outputs may be individually power cycled remotely. One jumper per zone is provided for voltage selection in dual voltage systems.

See the SD4 and NL4/NLX Installation manuals for more information.

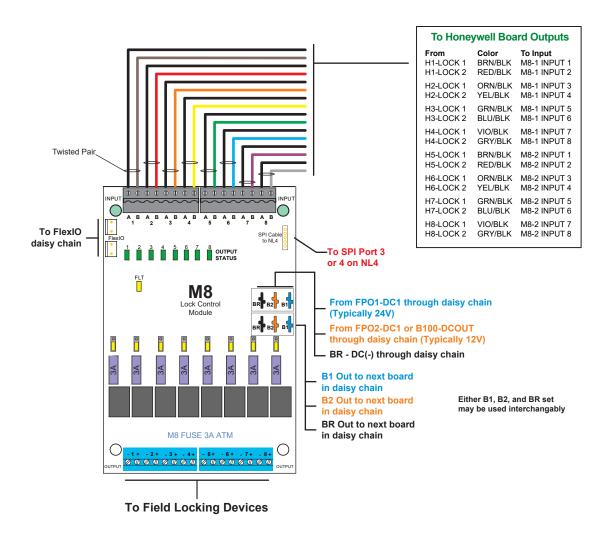

Typical Wiring - SD16

The SD16 provides network managed continuous auxiliary outputs. SD16-1 is prewired for power to the Mercury controllers. One or more additional SD16 boards may be provided for external auxiliary power. The terminal strips on these additional SD16 boards will be empty.

System configuration, FAI Operation, and fault setpoints are selectable through the embedded browser interface of the required NL4 or NLX. Outputs may be individually power cycled remotely. One jumper per zone is provided for voltage selection in dual voltage systems.

See the SD16 and NL4/NLX Installation manuals for more information.

The C8 provides a protective and operational buffer between the access control boards and field induced problems or issues.


Eight trigger inputs are pre-wired to the access control lock outputs with color-coded, twisted-pair wires and eight relay controlled outputs are provided for lock control. Each output is capable of 3A of current and is selectable for either voltage in dual voltage systems.

The blue and black jumpers are pre-set from the factory. The jumpers below need to be set by the installer.

See the C8 Installation manual and Application Note AN-29 for more information.

Color	Function	Position 1	Position 2
Red	FAI	Enabled	Disabled
Yellow	Voltage Select	B1	B2
White	Lock Type	Maglock (Fail Safe)	Strike (Fail Secure)

Typical Wiring - M8

The M8 provides a protective and operational buffer between the access control boards and field induced problems or issues. This unit is used for lock control when a network managed system is desired with remote control, reporting, and diagnostics.

Eight trigger inputs are pre-wired to the access control lock outputs with color-coded, twisted-pair wires and eight relay controlled outputs are provided for lock control. Each output is capable of 3A of current and is selectable for either voltage in dual voltage systems.

System configuration, FAI Operation, and lock operation are selectable through the embedded browser interface of the required NL4 or NLX. One jumper per zone is provided for voltage selection in dual voltage systems.

See the M8 and NL4NLX Installation manuals for more information.

For more information about the ProWire™ System: www.lifesafetypower.com PH 888.577.2898

© 2024 LifeSafety Power. All rights reserved. LifeSafety Power, FlexPower and ProWire are registered trademarks of LifeSafety Power or its affiliates. Product specifications are subject to change without notice. This material is provided for informational purposes only; LifeSafety Power assumes no liability related to its use.